Department of Numerical Mathematics Faculty of Mathematics and Physics Charles University

A posteriori error estimates for nonstationary problems

  • ID: 2740, RIV: 10334596
  • ISSN: 1439-7358, ISBN: 978-3-319-39927-0
  • source: Numerical Mathematics and Advanced Applications ENUMATH 2015
  • keywords: a posteriori error estimate; evolution problems; finite element method
  • authors: Vít Dolejší, Filip Roskovec, Miloslav Vlasák
  • authors from KNM: Dolejší Vít, Vlasák Miloslav, Roskovec Filip


We apply continuous and discontinuous Galerkin time discretization together with standard finite element method for space discretization to the heat equation. For the numerical solution arising from these discretizations we present a guaranteed and fully computable a posteriori error upper bound. Moreover, we present local asymptotic efficiency estimate of this bound.