KNM MFF UK

Department of Numerical Mathematics Faculty of Mathematics and Physics Charles University

A posteriori error estimates of the discontinuous Galerkin method for the heat conduction equation

  • ID: 2622, RIV: 10126871
  • ISSN: 0001-7140, ISBN: not specified
  • source: Acta Universitatis Carolinae - Mathematica et Physica
  • keywords: discontinuous Galerkin method; a posteriori error estimates; Helmholtz decomposition
  • authors: Ivana Šebestová, Vít Dolejší
  • authors from KNM: Dolejší Vít

Abstract

The paper deals with a numerical solution of the nonstationary heat equation with mixed Dirichlet/Neumann boundary conditions. The space semi-discretization is carried out with the aid of the interior penalty Galerkin methods and the backward Euler method is employed for the time discretization. The a posteriori upper error bound is derived.