KNM MFF UK

Department of Numerical Mathematics Faculty of Mathematics and Physics Charles University

A priori error estimates of an extrapolated space-time discontinuous Galerkin method for nonlinear convection-diffusion problems

  • ID: 2591, RIV: 10103712
  • ISSN: 0749-159X, ISBN: not specified
  • source: Numerical Methods for Partial Differential Equations
  • keywords: a priori error estimates; extrapolated space-time discontinuous Galerkin method; nonlinear convection-diffusion problem
  • authors: Miloslav Vlasák, Vít Dolejší, Jaroslav Hájek
  • authors from KNM: Dolejší Vít, Vlasák Miloslav

Abstract

The paper deals with the numerical solution of a scalar nonstationary nonlinear convection-diffusion equation. We employ a combination of the discontinuous Galerkin finite element method for the space as well as time discretization. We analyze this scheme and derive a priori asymptotic error estimates. Finally, we present an efficient solution strategy and numerical examples verifying the theoretical results