KNM MFF UK

Department of Numerical Mathematics Faculty of Mathematics and Physics Charles University

A posteriori error estimates of the discontinuous Galerkin method for parabolic problems

  • ID: 2445, RIV: 10081172
  • ISSN: not specified, ISBN: 978-80-85823-57-8
  • source: Programs and Algorithms of Numerical Mathematics 15
  • keywords: a posteriori error estimates; discontinuous Galerkin method; Helmholz decomposition
  • authors: Ivana Šebestová, Vít Dolejší
  • authors from KNM: Dolejší Vít

Abstract

We deal with the heat equation discretized by discontinuous Galerkin finite element method in space and by backward Euler method in time. We present a simple and efficient a posteriori error estimate based on Helmholz decomposition technique.