Department of Numerical Mathematics Faculty of Mathematics and Physics Charles University

Analysis of semi-implicit Runge-Kutta-DGFEM for a semilinear convection-diffusion equation

  • ID: 2518, RIV: 10057443
  • ISSN: not specified, ISBN: 978-0-7354-0831-9
  • source: International Conference of Numerical Analysis and Applied Mathematics ICNAAM 2010
  • keywords: a priori error estimates; discontinuous Galerkin finite element method; Runge-Kutta method; semi-implicit scheme
  • authors: Vít Dolejší, Miloslav Vlasák, Zuzana Vlasáková
  • authors from KNM: Dolejší Vít, Vlasák Miloslav


We deal with the numerical solution of the semilinear convection-diffusion equation. The space discretization is carried out by discontinuous Galerkin finite element method and for the time discretization we employ suitable combination of implicit and explicit Runge-Kutta method. The resulting scheme is robust and very effective.